Math 241 Winter 2024 Lecture 10

Feb 19-8:47 AM

$\operatorname{Sin} x=\frac{2}{3}, \quad x$ is in QII $\sin y=\frac{-1}{3}, \quad y$ is in QIV find 1) $\sin 2 x=\sin (x+x)$ $\begin{aligned} & =\sin x \cos x+\cos x \sin x \\ & =2 \sin x \cos x \end{aligned}$ 2) $\cos 2 x$ $\text {) } \cos 2 x=2 \cdot \frac{\alpha}{3} \cdot \frac{-\sqrt{5}}{3}=\frac{-4 \sqrt{9}}{9}$ $=\cos (x+x)=\cos x \cos x-\sin x \sin x=\cos ^{2} x-\sin ^{2} x$ $\cos (A+B)=\cos A \cos B-\sin A \sin B=\left(-\frac{\sqrt{5}}{3}\right)^{2}-\left(\frac{2}{3}\right)^{2}$ 3) $\tan (x-y)$ $\begin{aligned} & =\frac{\tan x-\tan y}{1+\tan x \tan y}=\frac{\frac{-2}{\sqrt{5}}-\frac{-1}{2 \sqrt{2}}}{1+\frac{-2}{\sqrt{5}} \cdot \frac{-1}{2 \sqrt{2}}} \quad \operatorname{LCD}=2 \sqrt{5} \sqrt{2} \\ & =\frac{\frac{-2}{\sqrt{5}}+\frac{1}{2 \sqrt{2}}-\frac{4}{9}}{1+\frac{2}{\sqrt{5} \cdot 2 \sqrt{2}}}=\frac{\frac{1}{9}}{2 \sqrt{5} \sqrt{2}+2}=\frac{-4 \sqrt{2}+\sqrt{5}}{2 \sqrt{10}+2} \cdot \frac{2 \sqrt{10}-2}{2 \sqrt{10}-2} \\ & =\frac{-8 \sqrt{20}+8 \sqrt{2}+2 \sqrt{50}-2 \sqrt{5}}{\frac{4 \sqrt{100}}{40}-4 \sqrt{10}+4 \sqrt{10}-4} \\ & =\frac{-16 \sqrt{5}+8 \sqrt{2}+10 \sqrt{2}-2 \sqrt{5}}{36}=\frac{18 \sqrt{2}-18 \sqrt{5}}{36} \\ & =\frac{18(\sqrt{2}-\sqrt{5})}{36}=\frac{\sqrt{2}-\sqrt{5}}{2} \end{aligned}$

Jan 18-8:17 AM

$$
\begin{aligned}
& \text { Double - Angle } \\
& \sin 2 A=2 \operatorname{Sin} A \cos A \\
& \operatorname{Cos} 2 A=\operatorname{Cos}^{2} A-\operatorname{Sin}^{2} A=2 \operatorname{Cos}^{2} A-1=1-2 \operatorname{Sin}^{2} A \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A} \\
& \operatorname{Cos} A=\frac{3}{5}, \quad \sin A<0, \quad \text { find } \\
& \sin 2 A=2 \operatorname{Sin} A \cos A=2 \cdot \frac{-4}{5} \cdot \frac{3}{5}=\frac{-24}{25} \\
& \cos 2 A=2 \cos ^{2} A-1=2\left(\frac{3}{5}\right)^{2}-1=\frac{18}{25}-\frac{25}{25}=\frac{-7}{25} \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}=\frac{2 \cdot \frac{-4}{3}}{1-\left(\frac{-4}{3}\right)^{2}}=\frac{\frac{-8}{3}}{1-\frac{16}{9}} \\
& =\frac{3}{9 \cdot \frac{-8}{35}}=\frac{-24}{9-1-9 \cdot \frac{16}{9}}=\frac{-24}{-7}=\frac{24}{7} \text {, }
\end{aligned}
$$

Jan 18-8:46 AM

Solve the triangle below. Round to whole An.

$$
\text { b } \sin 99^{\circ}=43 \sin 52^{\circ}
$$

$$
b=\frac{43 \sin 52^{\circ}}{\sin 99^{\circ}} \approx 34 \mathrm{~cm}
$$

$$
\begin{aligned}
& A+B+C=180^{\circ} \\
& A+52^{\circ}+29^{\circ}=180^{\circ}-\square A=99^{\circ} \\
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \frac{43}{\sin 999^{\circ}}=\frac{b}{\sin 52^{\circ}}=\frac{c}{\sin 29^{\circ}} \\
& \begin{array}{l}
\sin 52^{\circ} \\
52^{\circ} \\
99^{\circ}
\end{array} 34 \mathrm{~cm} \quad C \cdot \sin 99^{\circ}=43 \cdot \sin 29^{\circ} \\
& C=\frac{43 \cdot \sin 29^{\circ}}{\sin 99^{\circ}} \\
& C \approx 21 \mathrm{~cm}
\end{aligned}
$$

Jan 18-9:10 AM

find a. Round to 1-decimal.

we have SAS use Law of cosines

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& a^{2}=12.9^{2}+15.4^{2}-2 \cdot 12.9 \cdot 15.4 \cdot \cos 423.3 \\
& a^{2}=109.6997733 \\
& a=\sqrt{109.6997733} \\
& a \approx 10.5 \mathrm{~cm}
\end{aligned}
$$

Point C is 259 m from Point A.
Point C is 423 m from Point B. The angle $A C B$ is 132°.
find the distance from A to B.
Drawing Required.
we have SAS

Law of Cosines

$$
\begin{gathered}
c^{2}=a^{2}+b^{2}-2 a b \cos C=423^{2}+259^{2}-2 \cdot 423 \cdot 259 \cdot \cos 132^{\circ} \\
c^{2}=392.625 .8837-c=627 \mathrm{~m}
\end{gathered}
$$

The angle of depression from a plane to

a ship is 17°.
Plane is 5120 ft from the ship.
The angle of depression from the plane
to a boat is 25°.
Find the distance between ship $\dot{\varepsilon}$ boat.
Drawing Required.

using Law of sines $\frac{a}{\operatorname{Sin} 8^{\circ}}=\frac{5120}{\operatorname{Sin} 155^{\circ}}$
$a \sin 155^{\circ}=5120 \sin 8^{\circ}$

$$
a=\frac{5120 \sin 8^{\circ}}{\sin 155^{\circ}} \approx 1686 \mathrm{ft}
$$

Jan 18-9:59 AM

To measure the length of a tunnel, the Surveyor pick a point and measures to each end of the tunnel.

Suppose the angle between the lines from that point is 110°. Find length of the tunnel if the point is 3800 m and 2900 m from the end of tunnel.

$L^{2}=2900^{2}+3800^{2}-$
$2 \cdot 2900 \cdot 3800 \cdot \operatorname{Cos} 110^{\circ}$
$L^{2}=$

$$
L \approx 5513 \mathrm{~m}
$$

To the nearest 100 5500 m

Jan 18-10:27 AM

$$
\begin{aligned}
& \text { A plane is heading North. } \\
& \text { Captain observes a mountain with } \\
& \text { bearing of } 24.1^{\circ} \text {, and it is } 7.92 \mathrm{~km} \\
& \text { from the mountain. } \\
& \text { A short time later, the bearing becomes } \\
& 32.7^{\circ} \text { How far is the plane from the } \\
& \text { mountain now. Drawing Required. } \\
& \text { Law of Sines ? }
\end{aligned}
$$

Graphing $y=\tan x$
$\left.\begin{array}{ccc}\text { Domain } & -\frac{\pi}{2}<x<\frac{\pi}{2} & \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ \text { Range } & (-\infty, \infty)\end{array}\right\} \begin{gathered}\text { one period } \\ \text { of } \\ \text { Graph }\end{gathered}$

$$
\begin{array}{ll}
\text { Recall } \\
\tan x=\frac{\operatorname{Sin} x}{\cos x} & \begin{array}{l}
\cos \frac{\pi}{2}=0 \\
\cos \frac{\pi}{2}=0
\end{array}
\end{array}
$$

Graph $y=\tan \frac{1}{2} x$

$$
-\frac{\pi}{2}<\frac{1}{2} x<\frac{\pi}{2}
$$

$$
-\pi<x<\pi
$$

Jan 18-11:04 AM

Graph $y=\tan \left(x-\frac{\pi}{2}\right)$

$$
\begin{gathered}
-\frac{\pi}{2}<x-\frac{\pi}{2}<\frac{\pi}{2} \\
0<x<\pi
\end{gathered}
$$

Graph $y=\tan (\underbrace{2 x+\frac{\pi}{2}})$

$$
\begin{aligned}
&-\frac{\pi}{2}<2 x+\frac{\pi}{2}<\frac{\pi}{2} \\
&-\frac{\pi}{2}-\frac{\pi}{2}<2 x+\frac{\pi}{2}-\pi / 2<\frac{\pi}{2}-\frac{\pi}{2} \\
&-\pi<2 x<0 \\
& \frac{-\pi}{2}<x<\frac{0}{2} \frac{-\pi}{2} \\
& \frac{-\pi}{2}<x<0 \\
& \frac{-\pi / 2}{2}= \\
& \hline
\end{aligned}
$$

Graph $y=\tan \left(\frac{1}{4} x\right)$

$$
\begin{gathered}
-\frac{\pi}{2}<\frac{1}{4} x<\frac{\pi}{2} \\
L C D=4 \\
-2 \pi<x<2 \pi
\end{gathered}
$$

Graph $y=\tan ($ 悡 $x)$
Method I: be careful
method II:
Recall $\tan (-\alpha)=-\tan \alpha$

$$
\tan (-2 x)=-\tan 2 x
$$

$$
y=\tan (-2 x)=-\tan 2 x
$$

$$
-\pi / 2<2 x<\pi / 2
$$

$$
-\pi / 4<x<\pi / 4
$$

Graph $y=-2 \tan \left(-\frac{1}{2} x\right)-4$
Recall $\tan (-\alpha)=-\tan \alpha$

$$
\tan \left(-\frac{1}{2} x\right)=-\tan \frac{1}{2} x
$$

$$
y=-2 \cdot-\tan \frac{1}{2} x-4
$$

$$
y=\text { (2) } \tan \frac{1}{2} x-4
$$

$$
\frac{-\pi}{2}<\frac{1}{2} x<\frac{\pi}{2}
$$

$$
-\pi<x<\pi
$$

Graph $y=\operatorname{Sin}(-2 x)$
Recall

$$
\begin{aligned}
& \sin (-\alpha)=-\sin \alpha \\
& \sin (-2 x)=-\sin 2 x
\end{aligned}
$$

Graph $y=-\operatorname{Sin} 2 x$

$$
0 \leq 2 x \leq 2 \pi
$$

$$
0 \leq x \leq \pi
$$

Geraph $y=-2 \cos \left(\pi-\frac{1}{2} x\right)+2$

$$
\begin{aligned}
& y=\cos (\underbrace{\pi-\frac{1}{2} x}) \\
& 0 \leq \pi-\frac{1}{2} x \leq 2 \pi \\
& 0 \leq 2 \pi-x \leq 4 \pi \\
& -2 \pi \leq-x \leq 2 \pi \\
& 2 \pi \geq x \geq-2 \pi
\end{aligned}
$$

plog in -2π

$$
\cos \left(\pi-\frac{1}{2}(-2 \pi)\right)=\cos 2 \pi=1
$$

Jan 18-11:43 AM

Graph $y=-2 \cos \left(\pi-\frac{1}{2} x\right)+2$

$$
\pi-\frac{1}{2} x=-\frac{1}{2} x+\pi=-\left(\frac{1}{2} x-\pi\right)
$$

Recall $\operatorname{Cos}(-\alpha)=\cos \alpha$

$$
\cos \left(\pi-\frac{1}{2} x\right)=\cos \left(-\left(\frac{1}{2} x-\pi\right)\right)=\cos \left(\frac{1}{2} x-\pi\right)
$$

Let's graph

$$
y=\cos \left(\frac{1}{2} x-\pi\right)
$$

Graph $y=\operatorname{Sec} x$
Graph $y=\operatorname{Cos} x$

Graph $y=\frac{3}{2} \csc \left(x-\frac{\pi}{2}\right)$
Hint
Graph $y=\frac{3}{2} \operatorname{Sin}\left(x-\frac{\pi}{2}\right)$

$$
0 \leq x-\frac{\pi}{2} \leq 2 \pi
$$

$$
\pi / 2 \leq x \leq \frac{5 \pi}{2}
$$

Evaluate

$$
\begin{array}{r}
\frac{3}{2} \csc \left(\pi-\frac{\pi}{2}\right) \\
=\frac{3}{2} \csc \left(\frac{\pi}{2}\right)=\frac{3}{2} \cdot 1=\frac{3}{2} \\
\frac{3}{2} \csc \left(2 \pi-\frac{\pi}{2}\right)= \\
\frac{3}{2} \csc \left(\frac{3 \pi}{2}\right)=\frac{3}{2}(-1)=-\frac{3}{2} \\
\text { are on Exam II } \\
\text { Basic }
\end{array}
$$

Evaluate $\frac{3}{2} \csc \left(2 \pi-\frac{\pi}{2}\right)=$

